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We study fully nonlinear spatio-temporal development of the thermal self-focusing instability of 
high-power radio waves near the critical surface of the ionosphere. These simulations improve on 
our earlier work by including an evolution equation for the density instead of using the assumption 
of constant pressure to determine the perturbed density connected with the known temperature 
perturbation. Using our two-dimensional nonlinear code we analyze the time scale and associated 
velocity for the development of the field-aligned irregularities as they spread from the critical 
surface both in the underdense as well as the overdense regions. The scaling of this velocity as 
a ]unction of the radiated power of the heater electromagnetic wave (ERP) is determined. We 
also study the characteristic size of the self-focused filament as a ]unction of ERP. Finally, the 
spectrum of the density and temperature fluctuations as well as modifications in the equilibrium 
values of these parameters for different values of ERP are presented. 

1. INTRODUCTION 

The ionospheric modification experiments using radio frequence (RF) heater facilities at Arecibo, 
PlatteviUe, Alaska, the "Sura" facility in Russia, and the facility of Tromso, Norway, provide a rich variety 
of results related to the spatial and temporal structures in the ionospheric medium, the scattered elec- 
tromagnetic signals, and electron energization [1-8]. These experiments have shown that increase in high 
frequence (HF) power results in the creation of irregularities some of which can be attributed to the ther- 
mal self-focusing instability [1, 9-14]. Observations made with ionosondes [15], scintillation studies [16-19], 
radar scattering [20, 21], in-situ satellite measurements [22], optical emissions [23], dynasonde HF radar [24], 
and in-situ rocket measurements [25] have revealed the excitation of irregularities in the medium during the 
RF heating experiments, which have been attributed to the self-focusing instability (SFI). There are other 
nonlinear processes that can occur in the vicinity of the critical surface, namely the oscillating two-stream 
instability or the modulational instability, which leads to strong Langmuir turbulence [26] and the para- 
metric decay instability [27, 28] both driven by the ponderomotive force. These processes generate short 
scale length (less than or of the order of meters) fluctuations, which occur in the unconditioned ionospheric 
plasma in the very early phase (less than tens of milliseconds). Our focus is on processes that occur on the 
longer heating timescales (from 100 ms to few seconds) and generate irregularity scales of tens of meters to 
kilometers. 
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Bernhardt and Duncan [13] have carried out two-dimensional (2D) numerical simulations of the self- 
focusing instability in the underdense plasma including a detailed inhomogeneous model of the ionosphere 
as well as the magnetic field of the Earth. They included an initial sinusoidal perturbation of the density 
in the case of underdense plasma when the pump wave was represented by a plane wave. This density 
perturbation leads to the linear growth of the SFI at the same wavelength. Their results showed that 
the initial pattern evolved into a distorted pattern (due to nonlinear effects) with smaller-scale sizes. The 
fundamental limitation of this study is that they focus on the underdense plasma, where there is no clear 
observational evidence of structuring. Few of the theoretical studies have extrapolated the results to the 
critical density and overdense region, where there is a preponderance of evidence for a broad spectrum of 
scale sizes, from kilometers to tens of meters. Cragin et al. [10], Gurevich [11], and Das and Fejer- [29] 
have developed theories for the linear stability of the thermal SFI in the vicinity of the critical surface 
and have found that it is an absolute instability, unlike the underdense case. Gurevich et al. [30] have 
recently developed a nonlinear theory for a single thermal filament. In their work they first excite upper- 
hybrid waves, with the high-powered heater, in the region between the upper hybrid resonance and plasma 
resonance and study the nonlinear thermal filamentation of the upper-hybrid wave. In this paper the focus 
is on studying the thermal self-focusing and filamentation of the electromagnetic heater wave (without 
converting it into the upper hybrid mode) near the critical surface. A two-dimensional code to study the 
nonlinear thermal self-focusing instability in the vicinity of the critical surface of the ionosphere [31] was 
developed. In this investigation we had a set of nonlinear equations coupling the electromagnetic heater wave 
with the temperature equation for the electrons. The density perturbations associated with this instability 
was evaluated by assuming the plasma pressure to be constant and computing the perturbed density knowing 
the perturbed temperature. This study was the first to address the full nonlinear time-development of the 
instability starting at the critical Surface and developing filamentary structures along the field-line. In the 
present work we have improved on the modelling by introducing a separate equation for the density evolution 
and studied in detail characteristics of the heater induced irregularities. Our results are also compared to 
some recent observations. 

The paper is organized as follows. In Sec. 2 the basic nonlinear system of equations for the thermal 
filamentation in the region of the critical surface are introduced. Various numerical considerations which 
play a role in determining our choice of the computational box are discussed in Sec. 3. In this section we 
also discuss the issues related to the boundary conditions. This is followed by a presentation of the results 
obtained from the solution of these equations in Sec. 4. We compare these results to some observations at 
the "Sura" and Tromso heating facilities. Finally a brief discussion of our main results is summarized in 
Sec. 5. 

2. B A S I C  E Q U A T I O N S  

We consider the basic geometry for the wave propagation and the orientation of the magnetic field 
B0 in the high-latitude ionopshere. The wave propagates vertically upward along the magnetic field in the 
z direction. The plasma density is assumed to increase as a function of z. The basic equations are [11] 

[ C2V2 r 0jWp2e(ZC)§ iV e ~ ~'~e '(n(z)---n0(zc))] E ~ 1 7 7  (1) 

& = o--7 xll + Q - L, (2) 

0(0 ) 0(rT) 
~ -  = 0-~ ~ Oil ~ z  + ~z  D § q - ;3nY. (3) 

The first equation is the wave equation for the extraordinary (X) Eo+ mode or the ordinary (O) 

mode E0- with the heater wave frequency w. Here Wpe = ~/4~re2n/me is the electron plasma frequency, e 
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is the elementary charge, me is the electron mass, no and n ar e equilibrium and per turbed electron density, 
respectively, ~e = e B o / m e c  is the electron cyclotron frequency, c is the velocity of light, and be = bei + ben 
is the sum of the electron-ion and electron-neutral collision frequencies. The surface z ---- zc is the critical 
surface where the local plasma frequency 0ape(Zc) matches the frequency w. The second equation is the 
equation for the electron temperature T, where XII is the parallel thermal conduction coefficient, Q is the 
time-averaged ohmic heating by the wave defined as 

e2E • (4) 
Q = 3me[(  fie) 2 + be2] ' 

L is the sum of the losses due to Coulomb collisions, electron-neutral collisions excitation of fine-structure, 
rotational excitation, and vibrational excitations [32]. Equation (3) for the evolution of the density is the 
major new addition to our earlier model [31]. Also, Dtl and DI~ are the diffusion and the  thermal  diffusion, 
respectively, q is the  ionization source, f i n N  is the loss due to recombination in the F-layer,  where it is 
determined by the conversion rate fl of atomic O + into molecular NO +, and N is the number  density for the 
molecular nitrogen. If the parallel t ransport  dominates the density evolution, the per turbed density evolves 
to keep the pressure constant along the magnetic field lines. 

We now introduce the following normalizations to derive a set of dimensionless equations. In the 
present study we will consider a linear density profile in the z (vertical) direction, with a characteristic scale- 
length Ln. We normalize the spatially independent variables x and z to the Airy length zo - - - -  (c2Ln/oO2) 1/3, 
and time t to to = (2wz2/c2).  We define T = Tb + T1, where T1 is perturbed tempera ture  related to the 
change in electron temperature  T from the background ion temperature Tb. The per turbed  temperature 
T1/Tb = 8/a .  Then we get that the new perturbed temperature 0 = c~(T - Tb)/Tb, with o~ ---- w2z2/c  2. The 
density is normalized to no(Zc) and the wave amplitude is redefined as the jitter velocity e E o •  which 
is normalized to ~ 7 ~ c s .  Here Cs is the ion sound velocity computed with the electron temperature.  

3. N U M E R I C A L  P R E L I M I N A R I E S  

We first choose a typical set of plasma parameters which are needed to evaluate the  various dimen- 
sionless parameters derived in Sec. 2. We choose high-latitude F-region parameters. The  incident wave 
is assumed to have the frequency f0 = 5 MHz. The magnetic field equals B0 -- 0.5 G, and the electron 
temperature, T --- 0.1 eV. For this particular choice of the parameters the value a -- 561. Since we consider 
propagation along the magnetic field, the only difference between the O mode and the  X mode is the po- 
sition of the reflection point in z and a difference in the heating Q. The position of the  reflection height 
zc is obtained from the relationship W2e(Zc) = w2(1 q: ~e/w). Here q= refers to the X mode mad O mode, 
respectively. In the F region, the wave frequency is about five times larger than the gyro-frequency within 
our present model. Thus, there is no significant difference in heating characteristics between the O mode 
and X mode, since the  heater  wave behaves as if the plasma is unmagnetized. Of course this is only true for 
the case of propagation along the magnetic field. This is a limitation of the present work. In future work 
we will address propagation at a finite angle to the magnetic field and finite angle between the direction of 
the density gradient and the magnetic field. The differences between O mode and X mode  heating will be 
more significant due to differences in their mode conversion properties [33]. The plasma is assumed to have 
a linear density profile with the scale length L,~ = 100 km. We will hold these parameters  as constants for 
the runs we discuss and will vary the intensity of the incident radiation. 

We now discuss various issues related to our numerical code. The number of grid points in the x 
direction iV= = 64, while the number of grid points in the z direction Nz = 256. The next  important  aspect 
of the simulations to discuss are the boundary conditions. At the lower boundary, z ---- 0, we specify E0 
and at the top boundary,  z = Lz, the wave amplitude is chosen to be zero. This is because beyond the 
critical surface at the  center of the simulation box, the wave is evanescent. For the tempera ture  and the 
density, the boundary conditions in z are that  the derivative of each of these quantities with respect to z 
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be zero. This is because the parallel diffusion and thermal conduction transport the energy away from the 
region of heating and allow it to escape through the boundary. In reality the boundary condition should be 
the continuity of the heat and particle fluxes along the field line. However, since both transport coefficients 
are very large, constant temperature and perturbed density tend to be established along the fieldline. The 
equilibrium density is maintained by the source. Thus at the boundary points we set the perturbed density 
and the temperature equal to that at the nearest point Within the computation box. For the lowest-order 
finite-difference scheme this is equivalent to parallel gradient being set equal to zero. In the x direction, 
transverse to the magnetic field, for all the three dependent variables we use periodic boundary conditions. 
The numerical scheme used is a finite-difference leap-frog scheme for evolving the density and temperature 
and a pseudo-spectral relaxation scheme for the wave equation [31]. 

The choice of the size of the box in the two directions needs to be addressed in some detail. The 
characteristic size in the x direction should be the basic size of the heating region, which is typically about 
3 0 -  50 km. Because of the self-focusing instability we anticipate the shortest scale lengths to be of the order 
of 10 to 100 meters. This would require a very large number (at least 104) of grid points in this direction 
to resolve the longest as well as the shortest scale sizes in the problem. Thus due to this computational 
constraint we choose the size of the computation box in the x direction to be of the order of the 1 kin. 
This will allow us to resolve the shortest scale lengths we expect to obtain in the nonlinear phase. For the 
present-day intensities, even scale lengths of the order of a kilometer are linearly unstable. These short scale 
lengths, though linearly stable, are generated by the nonlinear "collapse" due to the self-focusing instability. 
In the recent work [19], electron density irregularitities in the F region, excited by the European Incoherent 
Scatter (EISCAT) high-power facility at Tromso, Norway, and observed by scintillations of the 250 MHz 
satellite signals, show that the spectra are in the range of kilometers to tens of meters. Since the power- 
density used in our studies is in the range used at Tromso, the choice of the scale-lengths is relevant to these 
observations. 

In the z direction the shortest scale-size is the Airy length. For the parameters chosen, this is typically 
about 180 m. For Nz = 256, the box size in the z direction is 9 km. Finally, our initial conditions are the 
following: the temperature is uniform in the box, the density has linear variation in z and the wave is 
launched from the lower boundary. We introduce a 1.0% density perturbation with eight harmonics of the 
basic periodic length in x and the same amplitude. This initial perturbation is localized in a small region 
in z around the critical surface to seed the instability. 

4. NUMERICAL RESULTS 

Let us first discuss the results for the heater wave intensity of 0.3 m W / m  2. Figure 1 shows the 
normalized wave amplitude and the normalized perturbed temperature and density contours at three dif- 
ferent instants of time. The heater wave reflected at the critical surface at Lz/2  three milliseconds after its 
launching from z -- 0. The wave amplitude is basically an Airy-like pattern (Fig. la). The Airy swelling 
increases the amplitude at the critical surface. We also see that the longest wavelength mode (in x) grows 
localized in z in the first Airy peak near the reflection height. In this very early phase, the temperature 
in the underdense plasma has increased by a fraction of a percent. However, at the reflection height, the 
localized region of the wave intensity has led to localized heating of the plasma as seen on the temperature 
contours of Fig. lb. Another interesting feature that  emerges from the comparison of the localized hot 
spot for the wave and the temperature is that the extent of the temperature hot spot along the z direction 
is larger than the Airy length, the spatial extent of the heater wave enhanced region. This is due to the 
parallel heat transport along the field lines (in the z direction) which diffuses the heat. Since the perturbed 
temperature is about 0.27%, the associated changes in the density are not apparent on the density contours 
in Fig. lc. Both the normalized wave amplitude and normalized perturbed temperature are large, because 
of the large value of the parameter ~, in the normalization. 

At a later time t = 0.33 s, we observe an interesting phenomenon. As the single hot spot diffuses both 
above and below the original reflection height, in the underdense region the wave gets redirected and spawns 
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Fig. 2. Velocity of downward propagation of the temperature irregu- 
larity (solid squares) and upward propagation of the reflection height 
(solid circles) versus power density P. 

secondary convective instability seeded by the irregularities spreading from the reflection height (Fig. ld - l f ) .  
In an earlier work [34], we had shown that pre-existing density irregularities can facilitate the underdense 
convective instability. In our present study the seeding density irregularity arises naturally from the critical 
surface. Furthermore the diffusion of the heat into the overdense plasma reduces the local density in the 
overdense region thereby allowing the heater to propagate to heights beyond the original critical surface. 
This is clearly seen in Fig. ld, where the critical surface is about 1/2 km above that in Fig. la. 

At much later time, t = 5.83 s, the filaments have extended along the z direction and the transverse 
size of the filament has now reached a steady state. The heater wave has penetrated into the overdense region 
within the filaments (Fig. lg) and since the magnitude of the heating within the filaments has increased the 
local temperature to a maximum of about 18% (Fig. lh), the associated density depletions in the filaments 
is about a few percent as seen in the density plot (Fig. li) at the final time 5.83 s. We stop our simulations 
at this time since the wave has penetrated all the way to the top of our simulation box. The wave still 
has the characteristic Airy structure near the new constantly evolving reflection height, but appears to be 
more diffuse in the underdense region. What is interesting to observe is that even within the filaments, the 
density still has a weak gradient along the z direction in this quasi-stationary state. 

As noted earlier, both the density and the temperature perturbations originate at the critical surface, 
and then diffuse both into the overdense as well as the underdense plasma. Shown in Fig. 2 is the effective 
velocity of propagation of the temperature irregularity (solid squares) into the underdense and the propaga- 
tion of the reflection height (solid circles) into the overdense plasma, respectively, as a function of the heater 
power-density. These velocities were computed by dividing the distance between the original critical surface 
and the bottom and top boundaries respectively by the time taken to reach the boundaries. Figure 2 shows 
that the velocity of propagation increases with the radiated power both for upward as well as the downward 
propagation. The downward propagation of the thermal irregularity is faster than the upward propagation 
of the reflection height, but the difference diminishes as the power density of the heater increases. This 
can be understood qualitatively as follows. In the underdense region, the overall heating of the plasma by 
the radio wave as well as the lower density makes the parallel thermal conduction larger than that in the 
overdense plasma. This facilitates the faster propagation of the irregularity into the underdense compared 
to the overdense plasma. We have recently investigated the development of irregularities for 0.1 mW/m 2. 
At lower power-densities the time scale for getting to quasi-steady states is very long (more than a minute). 
However, the spreading of the irregularity into the underdense occurs on a much shorter time scale. Based 
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Fig. 3. Temperature (a) and density (b) fluctuations versus x, and the 
Fourier transform of the temperature (c) and density (d) fluctuations 
versus mode-number m at z = Lz/2 at the instants of time t =0.003,  
0.88, 1.93, 4.06, and 5.83 s. 

on these preliminary studies, we have found the expansion velocity into the underdense plasma for the  heater 
power-density 0.1 m W / m  2 to be 2.5 km/s. Using backscatter radar, Bakhmet'eva et i~l. [35] measured the 
velocity of the spreading of the heater induced irregularity into the underdense plasma along the fieldline 
to be 2 km/s  for the effective radiated power (ERP) of 70 MW. The estimated power-density for this ERP 
is about  0.1 m W / m  2. This is in good agreement with our result. 

In Fig. 3a and 3b we show the temperature fluctuation (iT(x, z) = T (x ,  z) - (T(x, z)) x "and density 
fluctuation &n(x, z) = n(x ,  z) - (n(x,  z)) x as a function of x, respectively, at z = L z / 2 .  The angular brackets 
with subscript x denotes averaging over the x direction. The Fourier spectrum of the temperature and 
the density fluctuation, transverse to the magnetic field at z = Lz /2 ,  is plotted as a function of the  mode 
number  rn in Fig. 3c and 3d, respectively. The mode number m is related to the wave number through the 
relationship kx = 2 ~ m / L z ,  where Lx is the size of the computation box in the x direction. In these figures, 
the different curves correspond to time instants 0.003, 0.89, 1.93, 4.66 and 5.83 s, respectively. Even though 
the long wavelengths grow first in the early phase, the short wavelengths increase rapidly. Also evident 
is tha t  the density lags behind the temperature and the spectra of the density and temperature are not 
identical. The density gets depleted in the region where the plasma gets preferentially heated; however, the 
evolution of the ra spectra shows marked differences. At late time the temperature is almost in steady state 
while the  density spectra is still evolving and the shorter wavelengths evolve as fast or faster than the  long 
wavelength modes. 

We de 'he  the normalized average temperature and density fluctuations as 

A T =  V/([bT(x,z)]2)x (5) 
T (T(x , z ) )= 

595 



0.1 ~. 

0.01 

0.001 '~ 

0.0001 

3 •  0~2 ~x 

< T > ~  �9 

f 

�9 | i | | |  

�9 �9 O �9 0 0  

< N >  x 

�9 R 
�9 �9 I ! i i 

, , , I t , , I , , , I i , , I i , i I 

0 I 2 3 4 5 

~ s  

I ! I 

Fig. 4. Normalized average temperature f luctuation (squares) and 
normalized average density fluctuation (circles) at z = 2Lz/5 versus 
time. 

and 

a== z)12)  (6) 

In Fig. 4, we show the time evolution of the average normalized temperature f luctuation and average 
normalized density fluctuation as a function of time. At very early time (t < 0.1 s) the  amplitude of the 
average temperature  and density fluctuations grow very rapidly. This is followed by a slow rise over a period 
of a few seconds to the saturated values. The temperature fluctuations are of the order  of 5 - 10%, while 
the density fluctuations are of the order of 1 - 2%. 

In Fig. 5 we show the wave amplitude (Figs. 5a, 5d, and 5g), temperature (Figs. 5b, 5e, and 5h) 
and density (Figs. 5c, 5f, and 5i) contours for power-densities P equal to 0.3 m W / m  2, 4.12 m W / m  2, and 
16.46 m W / m  2, respectively. Each of these simulations was run  till the wave reaches the top boundary. It 
took about six seconds for the wave to reach the top for P = 0.3 m W / m  2, one second for P = 4.12 m W / m  2, 
and half a secondfor  P -- 16.46 m W / m  2. The number of filaments increases as the power density increases, 
while their size decreases. Also, sifice the size of our computat ion box is kept the same for all three cases, 
the average distance between the filaments also decreases with the  increase in power. 

One of the important  questions to address is the scaling of the  transverse characterist ic scalelength 
with the heater power. We define the correlation function C(x,  z) as 

~0 L= C(x, z) = 6T(x + x', z )6T(x ,  z)dx' .  (T) 

The correlation length Lc is the distance in X for which the  correlation function has decreased to 1/e 
of its peak value. In Fig. 6 we show the change in the correlation length, at z = 2Lz/5 ,  for the  temperature 
as a function of power. As the power is increased, the correlation length decreases as expected.  In fact we 
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have found that for very high power densities (beyond the range plotted) the correlation length saturates at 
about 40 m. This is because the diffraction effect associated with the radio wave prevents further collapse. 
As discussed in our earlier work [31], the smallest scalesizes that  one can expect is of the order of the 
electron skin-depth (where the plasma frequency Wp0 is evaluated at the matching height) 

c (8) 
Ax = Wp0 

The density perturbat ion 5n is determined by the temperature perturbation which is controlled by 
the parallel thermal conduction loss and the collisional loss to the background ions. For the extreme case of 
complete depletion of the  density in the filament, the shortest tr~.n~verse scale-length is' electron skin-depth. 

5. DISCUSSION 

We have investigated the full nonlinear 2D development of the thermal self-focusing instability in the 
high-latitude F region ionosphere near the critical surface. The present work is an improved modelling of 
the density evolution compared to our earlier work [31] as well as more detailed quantification of the spatio- 
temporal development of the heater induced irregularities. We find that  an absolute instability develops at 
this surface. The local heating in the vicinity of the critical surface leads to density depletion, which then 
spreads along the field lines. The thermal diffusion process allows for the heat to be transported into the 
overdense plasma. The  reduction in the local density there leads to propagation of the waves and causes 
the field-aligned irregularity to extend into the overdense region. As the instability develops, the structures 
collapse in the direction transverse to the direction of the magnetic field. We have investigated the nature 
of the spectrum, the levels of average density and temperature fluctuations, and the correlation length of 
temperature fluctuations as a function of the power-density of the heater. The smallest scale-lengths of the 
irregularities obtained is 40 m. The associated average amplitude of the temperature irregularities is 5-10%, 
and that for the density irregularities is typically 1 - 2%. In the recent work by Basu et al. [19] electron 
density irregularitities in the F region, excited by the European Incoherent Scatter (EISCAT) high-power 
facility and observed by scintillations of the 250 MHz satellite signals, show that the spectra are in the range 
of kilometers to tens of meters. The spreading of the irregularity along the field line into the underdense 
plasma is consistent wi th  recent observations by Bakhmet'eva et al. [35]. Since the present study only allows 
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the wave to propagate along the magnetic field, there is very little difference between the X mode and the 
0 mode especially since the electron gyro-frequency is much less than the wave frequency (~e/w = 0.22). 
In future work we will incorporate more general geometry for the wave propagation, with the direction of 
propagation being at a finite angle to the magnetic field. 

This work was supported by NSF under the grant No.. ATM-9713719 and by the ONR. 
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